Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange.
نویسندگان
چکیده
Molecular studies on double-strand break (DSB) repair in mitosis are usually performed with enzymatically induced DSBs, but spontaneous DSBs might arise because of replication failures, for example when replication encounters nicks. To study repair of replication-born DSBs, we defined a system in Saccharomyces cerevisiae for the induction of a site-specific single-strand break. We show that a 21-base pair (bp) HO site is cleaved at only one strand by the HO endonuclease, with the resulting nick being converted into a DSB by replication during the S phase. Repair of such replication-born DSBs occurs by sister-chromatid exchange (SCE). We provide molecular evidence that cohesins are required for repair of replication-born DSBs by SCE, as determined in smc3, scc1 and scc2 mutants, but not for other recombinational repair events. This work opens new perspectives to understand the importance of single-strand breaks as a source of recombination and the relevance of cohesion in the repair of replication-born DSBs.
منابع مشابه
Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae
The repair of DNA double-strand breaks by recombination requires the presence of an undamaged copy that is used as a template during the repair process. Because cells acquire resistance to gamma irradiation during DNA replication and because sister chromatids are the preferred partner for double-strand break repair in mitotic diploid yeast cells, it has long been suspected that cohesion between...
متن کاملThe Dot1 histone methyltransferase and the Rad9 checkpoint adaptor contribute to cohesin-dependent double-strand break repair by sister chromatid recombination in Saccharomyces cerevisiae.
Genomic integrity is threatened by multiple sources of DNA damage. DNA double-strand breaks (DSBs) are among the most dangerous types of DNA lesions and can be generated by endogenous or exogenous agents, but they can arise also during DNA replication. Sister chromatid recombination (SCR) is a key mechanism for the repair of DSBs generated during replication and it is fundamental for maintainin...
متن کاملPds5 is required for homologue pairing and inhibits synapsis of sister chromatids during yeast meiosis
During meiosis, homologues become juxtaposed and synapsed along their entire length. Mutations in the cohesin complex disrupt not only sister chromatid cohesion but also homologue pairing and synaptonemal complex formation. In this study, we report that Pds5, a cohesin-associated protein known to regulate sister chromatid cohesion, is required for homologue pairing and synapsis in budding yeast...
متن کاملThe Smc5/6 complex: more than repair?
Through its functions in chromosome replication, segregation, and repair, the Smc5/6 complex has a central role in the maintenance of genome stability. The complex is part of the family of structural maintenance of chromosome protein complexes that also includes cohesin and condensin. Mutations in any of these complexes disrupt chromosome segregation and render cells hypersensitive to different...
متن کاملRepair of Site-Specific DNA Double-Strand Breaks in Barley Occurs via Diverse Pathways Primarily Involving the Sister Chromatid.
DNA double-strand break (DSB) repair mechanisms differ in their requirements for a homologous repair template and in the accuracy of the result. We aimed to quantify the outcome of repair of a single targeted DSB in somatic cells of young barley (Hordeum vulgare) plants. Amplicon sequencing of three reporter constructs revealed 47 to 58% of reads as repaired via nonhomologous end-joining (NHEJ)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EMBO reports
دوره 7 9 شماره
صفحات -
تاریخ انتشار 2006